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N | 1arge problems the solution of the large set of linearized

~ equations may be a formidable task - often consuming more than

- half of the computing effort when performed by a direct method

X based upon Gauss elimination. Accordingly, it is of consider-

) able importance to investigate alternative methods to solve the q

N problem. The present study presents results obtained by using

S 3 Preconditioned Conjugate Gradient Method (PCG) described in

e [7] and a Preconditioned Lanczos Method (PLM) described in [6] 1
" to solve a variety of numerical examples. Based upon results '

e obtained it is evident that a significant reduction in overall

(-t effort, compared to direct solutions, may be achieved using the

- preconditioned methods. |
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X 1. Introduction
The finite element method of discretization is used to reduce many complex continuum
Y
~ problems to discrete systems. Although this reduction is the most important step in the overall
Y
)
. analysis of a structure, solving the resulting discrete problem is often far from trivial. In gen-
’ v eral, the reduced system is nonlinear and an iterative method must be cmployed to arrive at the
‘. solution. Most solution methods are based on some form of Newton's method in which the
nonlinear problem 1s linearized, using an initial approximation, to arrive at a linear set of simul-
( taneous algebraic equations. The solution of the set of linear equations leads to a correction of
A the initial approximation. When solving the linear equations, one should not loose sight of the
. primary objective: solving the nonlincar problem.
| Iterative methods. such as the conjugate gradient or Lanczos method, are among the
many methods that may be used to solve systems of linear equations. The advantage of these :
|
° |
:_ methods, when used as the inner loop of the Newton iteration, is twofold.
\ (1} t'he linear equation may be solved to any desired level of accuracy as governed by the
. Newton iteration.
y (i) A considerable reduction in storage can be achieved when no triangular factorization need
be performed.
In {6} a method was developed, based on the preconditioned Lanczos method, to realize
some of the advantages of iterative methods. In this previous study, the triangular factors of
i
Y the initial tangent matrix were used to form a preconditioning matrix for the subsequent solu-
i-: tion steps In the present study we have climinated factorizations by employing other precondi:
.
- tioners and further. have reduced the storage needs of the method. Accession For
o2 e - oo e e |
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2. A Preconditioned Conjugate Gradient Method

An essential step in nonlinear analysis of structures using Newton's method (or a4 variant
such as moditicd Newton or quasi-Newton methods) is solving 4 linear system ol algebraw
equations. The preconditioned conjugate gradient method (hereafter called PCG) 1s one of the
many procedures for solving

r=b  Ax=0 21
where A 15 an nx n symmetric positive detinite matrix (which for finite element caiculations is
sparsely populated) and b 1s the night-hand side vector. In the case of static analysis, A is the
current tangent matrix and i the case of dynamic analysis, A depends on the mass, damping
and tangent stiffness matrices, as well as the time increment.

The initial popularity of the conjugate gradient method was due 10 a number of factors.
In exact arthmetic the method required a maximum of » iterations to solve (2.1) which made
the method superior to other iterative methods. In fact conjugate gradient is in the class of
semi-iterative methods which also includes the Lanczos algorithm {10]. The disadvantage of
direct methods is their large storage demands for keeping the factors of A. The only interface
between the conjugate gradient method and A is through the product Av for a given vector v.
This is an elegant way of taking advantage of sparsity of A which has the added advantage that
A nced not be known explicitly but only a means of computing the matrix-vector product is
required

The popularity of the conjugate gradient method vanished once it was found that under
certan conditions the method required as many as S» or 6 # steps to reduce the residual 1o the

desired levels This degradation ss due (o the strong influence of round-off error.
The additon of precondiioning eliminated this difficulty.  Instead of solving (2. 1) we
solve

P'Ax=-P'b (2.2)
for somce appropriate chowce of P The object then s 1o choose P osuch that the coefficient

matrix of (22145 well condinoned

. --:"'ﬂ')'H\'E h“!".ﬂ !.B. h‘; 5: !.-\B ..'. t‘; , iﬂﬂ :..i;l ;..;Amﬁi
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Theoretical considerations suggest that at the end of cach iteration of CG the residual

norm is reduced by a facior 3/—,5_‘:—% when solving (2.1) where « s the condition number of A,
VK

defined by x = [|A{l IA 'll. See [1] for more details. Note that when « = 1. one iteretion s
sufficient to solve the equation. This provides us with a guideline for choosing P. For a well
chosen P only a few iterations reduce the residual norm to the desired level. Here we gine an
outline for the preconditioned conjugate algorithm:

Given an initial guess x,, a positive delinite preconditioning matrix P, the matrix A and the
right hand side b:

(1 Setp,- 1, = b Ax,

(2) Solve Pd, - 1. ford,

(3 forh - 01,2, - until convergence do

@) o, = (r d;)/ (p, . Ap;)
th) Xy = N oagpy

() r..; =r —«,Ap,

(d) Solve Pd, ., = r, 4

() B, - (r..;d,. )/ (r, . d;)

) p.oi=d, . +Bp4

The operation (v.u) denotes the inner product v/u. This algorithm generates a scquence
of approximations to the solution x with a corresponding residual vector r,. The termination
criterion can be chosen based on these quantities. In addition to storage demands for A and P
the algorithm requires storage for 4 vectors. The total number of operation per iteration is
NZA NP SN where ¥/ 4 and NZP are the number of operations for forming Au and

P 'v for a given u and »
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3. Splitting Methods

Next we turn o a topic which at first sight may seem unrelated to the solution of non-
linear algebraic equations. Consider the system of first order differential equations

x = f(x,¢) 3.0

where x is an n-dimensional vector, the superposed dot. ( ~ ), denotes differentiation with

respect to time and f is a function of the unknown vector x and .

We consider a special form of f which can be written as a sum of its subcomponents f

f= Y1 (3.2)
i ‘
Under thesc conditions the original problem can be thought as a sum of s subproblems
x =f(x,1) i=1,..,s (3.3)
In the case of finite element discretization of the spatial domain the sum in (3.2) ranges over
the elements or a set of elements. In other cases the splitting may be formed by other means.

one of which is demonstrated in the following section.

A consistent algorithm for the solution of (3.1), based on the notion of a splitting tech-
nique {2], can now be constructed as a product of algorithms for the sub-problems. In other
words, write the algorithm for (3.3) as

Xt = 57 [x,,1 (3.4)
where $'7 is an operator denoting the algorithm and the index m ranges over the increment in
time, #. Then the algorithm for (3.1) can be written as

X, = Sx, ] (3.5)

where

Qo ll som (3.
¢l

One of the disadvantages of the splitting method is its low accuracy. The best that these
methods can achieve is second order accuracy. That is the truncation error is of the order of A4
at best In the sequel we will use the above procedure to construct a preconditioning matrix for

the conjugate gradient algorithm described in section 2. The inherent inaccuracy of the splitting
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method poses no problem since the algonthm s used only as a preconditioner and therefore

one can obtain very high accuracies through the conjugate gradient iteration.
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4. Solution of Static Problems

Consider the system of linear first order differential equations

X+ Ax=b 4

where 7 is a given parameter. Formally the solution to equation (4.1) is

x() =¢Mixyg-A'B)+A D 4.2
where x, = x(0), is an initial condition. We observe from (4.2) thet as ¢ ends to infinity x(;)
converges 1o the solution of (2.1) for r > 0. Consiquently (4.1) may be utilized to solve the
linear equations (2.1). Indeed this approach has been suggested previously (e.g.. see [9]). In
general the exponential of a large matrix cannot be casily computed and a numerical solu e
(4.1) must be used. [n order to achieve a soluion of (2.1) the numerical solution te (  must
be assymptotically correct for infinite #, or a very large number of time steps must \ av ' to
compute the solution at infinite time. Here we are not concerned with constructing an accurate
solution to (4.1), rather we consider the method as a means of constructing a suitable precondi-

tioning matrix for the conjugate gradient algorithm described above.

Splitting methods may be applied to any problem of the form

x = Bx (4.3)
where B is an additive operator defined by
B= Y B, 4.4)
=1
such that the equations
x=Bx i=1,.s 4.5)

are signiticantly easier to solve than the original equations. The time stepping algorithm for the
global problem is then the product of all the time stepping algorithms for the subproblems with

a fractional time step h/s [2].

The coeflicient matrix A in (2.1) may be written as the sum of its diagonal matrix. D,

strictly lower triangular matrix, L, and a srictly upper triangular matrix such that

A=(D+L)+ (/4D + L)/ 4.6

The associated subproblems, x = —(%D + L)x and x = —(/.D + L’ )x can be solved easily.

LN '




Applying a backward difference method with a time step h/2 to each of the subproblems. we

arrive at

I 1

X.., = |I+ —h(D+ 2L) 47)
47

1+ -+
4r

5’;’?" t Xy

where x,, 1s an approximation to x(mh). For an initial condition x, = 0 we get an approxima-

tion to x{(h)

i 1
h h h /
X, = ¢ — I + — + 2L + + 2.7 1.8)
X, er ll . D+ 21 )l 1 i (D + 21 | }b (4.8
which is compared to the exact solution
um=h—eM1A‘b (4.9)

Comparing equations (4.8) and (4.9) suggests that the coefficient matrix in (4.8) may be a good

approximation to A ' for large h. and may therefore be an effective preconditioning matrix.

The scalar factor »2-/'* may be ignored for preconditioning purposes.
T

When using (4.8) in conjunction with the conjugate gradient algorithm of section 2 the

preconditioning matrix becomes

P=(+ 2D+ oL)I + /2D + wL') (4.10)

where w = #/27 is now a free parameter.

To simplify the choice of w we scale the stiffness matrix A such that diagonal of A is

unity. The resulting matrix is A = D “AD ™ The system of equations (2.1) now becomes

AX=b @in

wherex D xandb D b

The preconditioned miatrix must now be applied to (4 11) resulting in

P- (0t w4 ol)) 412

where A L v L7 Itas easy to show that preconditioning (4.11) using P is equivalznt 1o
preconditioning (2.1) with

P=(D+wl)D "(D+ ol (4.1

This can be identified as a member of the class of incomplete Choleski preconditioners [3].
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Note that when w = (), P becomes the diagonal matrix D, resulting in the simplest form of
preconditioning; diagonal scaling. When o - | then P = A + LD 'L/ where we note that the
error matrix LD 'L’ is rank deficient since L has zero diagonals. If the norm of D iy lurger
then the norm of L then the norm of the error matrix will be small compared to the norm of

A. consequenily, for most problems it is expected that the optimum w will be close to unity
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5. Solution of Dynamic Problems

We next construct a preconditoning matrix for the linear system of equalions aristng 1n
step-by-step algorithm for dynamic analysis of linear and nonlinear structures. In particular. we
consider the Newnmuark algorithm and the preconditioning matrix follows from the splitting

method of section 3, in much the same way as for the static problem.

Consider the linearized equations of motion
Mi + Ku=f (3
where M is the diagonal mass matrix, K is the stiffnes, matrix. f is the external load vedtor and
u 15 the response of the structure. For simplicity, we ignore damping effects; however. all of
the following results may be extended easily to the damped case. Accordingly. the lincarized

system of equations arising at every time step of the Newmark method is

Ax=b (5.2)
where
|
A=K+ —M (531
ar
and
b=f ., + --~~lr~,-M[u, + Ay, + (Y- B)AFa, | (5.4)

BAFr

Here v and a are velocity and acceleration vectors, respectively. At is the specificd time incre-
ment, 7 is the time and x is now the increment of displacement response. The Newmark
parameters are chosen such that 8 = (4 + y)?/4 with y > 4 which ensures unconditional
local stabily. The discretizations in time are
U, yomowo Ayt A AF (- 23)a, + 284, )] (5.5)
V. oy v F AL yla 4+ yAra, .y, (Se0
The abject 1s to solve (5.2) without forming the factors of A.
A spliting method similar to the one used for equation (4.1) can now be applied 10 cqua-

ton (5.1 The matrix resulting from the splitting algorithm can then be used as a precondi-

toner for (5.2)  Consider

R ..’\.-\.’\.-\4"..5\(\~:\u'.--..~. o R A
R "Ny,

Ly




P (L+ 0 MM'(L+ o (57
BAr BAF

u where K = L + L.”. Multiplying out the terms in (5.7), we obtain
o ! , 1
i.'. P= -—= [[3_\I2LM LT+ L+ L+ —_— M]
s BAr BAr
e
2 - L (BAFLM 'L + Al
) par
- L Ead + Al (5.8)
. - ﬁAf‘

where E(AF) = 8AFLM 'L/,

The preconditioned conjugate gradient algorithm of section 2 is invariant under the scaling

—

[N,

'

O]
1
S

of the preconditioning matrix; therefore, (5.8) shows that P will tend quadratically to the

D
'l

l.l
L)

dynamic stiffness matrix A as the time step diminishes. In other words, E tends to the zerc

" " “
LA
a &

7

matrix quadratically in Ar. We sec later that this characteristic results in an effective precondi-

tioning and the solution of equation (5.2) is obtained in very few iterations of the precondi-

tioned conjugate gradient algorithm.
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6. l.anczos Algorithm for Solution of the Linearized Problem

The discretization of nonlinear structural mechanics problems and lineanization ol the
resulting nonlinear algebraic equations for application of a Newton type methods normuil, wili

lead to a symmetric system of linear algebraic equations, (2.1).

In Section 2 we described the use of the conjugate gradient method to solve the linear
system of equations. In this section an alternative solution technique, a simple Lanczos
method, 15 presented

Iterative methods often have been used in numerical analysis for the solution of large sys-
tems ol cquanens  The Conjugate Gradient method is one such technigue introduced in 1952
by Hestenes and Stiefel 4], In the same year Lanczos published his method of minmimized
iteration which was imtally introduced for computing the eigen pairs of a large symmetrnic
matrix. Lanczos and Householder [S] pointed out the intimate connection between the two
approaches. These methods have several attractive features in common. There is no need for
A 1o have further special properties, such as banded form, no acceleration parameters have to
be estimated, and the storage requirements are only a few n-vectors in addition to the storage

needs of A.
6.1. The Lanczos Algorithm

For certinn applications of the fimte clement method, especially in nonlincar problems. 1t
is usual to have on hand an initial approximation x“ to the true solution of 2.1. The problem is

now to find a correction x° to be added to x“. Then

Ax = To to. 1)

where
LTI h . AX" ‘(‘3)
The Lanczos algorithm may be described very simply as a process of constructing the weak

form of cquation 2.1 from a very special subspace. The subspace under consideration is gen-

crated from the set of 7 vectors (ry, Ary, - - L A7 ey knownas the Krylov subspace [1o].
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To construct the weak torm 1t would be simpler if an orthonormal set of vectors. say

(q,.q>. " - ° .q,), were available. This can be achieved by applying Gram-Schmidt orthogonaliza-
tion to the Krvlov vectors. Initially, this appears to be an expensive way of obtaining an ortho-
normal base vectors, however this process can be simplified when the following two {acts are
used [10}:

(i) The use of Aq, and A 'ry, for orthogonalization against the previous q vectors and rormai-

ization of the resulting vector, leads to the same vector q,., .
(n)  The vector Agq, is orthogonal to q;.4>. - - - .q, .
Consequently it 1s sufficient to orthogonalize Aq, against q, ; and q, to obtain the next orthog-
onal vector. Accordingly,

r,EB,.!q,‘.=Aq,,—u,q,—3,q, ! (6.3}

where « = q/Aq and 8 = q,’ 1Aq,. It is important to note that the vectors (q;.q;, - - - .q, »)

are nel needed in equation 6.3 . This defines one step of the simple Lanczos algorithm. The

normalization of r, results in q,, . It is easy to show, by looking at g/, r,,that g,,, = e 1l
The special choice for the base vectors of the subspace has an additional advantage. The

projection of A onto this subspace is a tridiagonal matrix, T ,.

o B
B2 20,
T,=Q,’AQ,= B: . 64
a, 1 8,
ﬂj @,
where the g vectors form the columns of the matrix Q,, Q, = (q,,qs, - - - .q,). This fact was

realized soon after Lanczos introduced his method and the algorithm was put to use as a pro-
cess for the orthogonal transformation of a matrix to tridiagonal form. Despite its additiona!
attractions,  the  Lancszos process gave way to Givens' method in 1954 and  later to

Householder's method in 1958.

Fhe relationships that define the simple Lanczos algorithm can now be summarized in the
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following three equations.
Q/Q, =1, (6 5.a)
AQ! - Q/T/ = r/el/ ] Sbl
Q/’r/ =0 (65C)
. where e, 1s the /-th column of the jxy identity matrix I,. Setting q, = 0 and using r. us the

starting vector. the Lanczos algorithm may then be described as

Given 1, set 8, = |lgll, for y = 1.2, - - - repeat

() o
q1 — ——— —
3.

(2) u, — Agq,

3)r.—u -B4q,

4) a, — q'r,

(5) r,—r —«agq,

%) B,., = lr,l

While a direct use of the simple Lanczos algorithm usually leads to numerical difficulties,
thus requiring some reorthogonalization of the vectors, with care in selecting the precondition-

ing matrix these difficulties are avoided. In our test of the algorithm to date no difficulties have

been cncountered in using the simple preconditioned Lanczos algorithm (see Numerical Fxam-

ples).
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7. Modification to the FEAP Program.

The finite element computer program FEAP is described in Chapter 24 of Zienkiewicz
{13] and forms the basis for all computations performed as part of the current effort. Several
basic modifications have occurred since the original program was published. These include: (a)
replacement of the original subprograms ACTCOL and UACTCL for the direct solution of
linear algebraic equations for symmetric and unsymmetric problems, respectively, by the single
solver DASOL which is probably the most efficient implementation of a variable band. active
column equation solver available today for virtual memory machines; (b) inclusion of the New-
mark method to integrate the equations of motion for linear and nonlinear problems in struc-
tural mechanics; (¢) the ability to construct a tangent stiffness matrix and a residual torce
simultaineously (instead of using TANG followed by FORM, e.g., see below}; (d) a conver-
gence criteria based upon the current increment in energy (e.g., Ax’ r); and (e) inclusion of a
general data storage structure for nonlinear materials which require additional information to
the displacements in order to evaluate the current stress state at each inlegration point in an

element.

In the work reported here the program FEAP has been extended further to include the
capabi.  of solving problems using the Preconditioned Conjugate Gradient Method (PCG) or
the Preconditioned Lanczos Method (PLM) described above. In addition, a line search algo-
rithm has been incorporated for use with any of the solution methods - i.e., direct, PCG, or
PLM. As noted above, the preconditioning matrices require a knowledge of the nonzero terms
in the global tangent stiffness matrix (as well as the mass matrix for dynamics problems). Since
1t 1s not necessary to factor the preconditioning matrix, which would cause fill in the nonzero
structure. we have developed o direct means to construct the array containing the nonsero

terms.

The algorithm to construct the locations of the nonzero terms in the compressed tangent

stiffness matrix may be summarized by the following steps:
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1.0 Make a list of the elements which arc attached to each node. In FEAP this step is accom-
plished by constructing dynamically dimensioned arrays which will contain only the terms
associated with the actual nonzero structure; so that no storage will be wasted. Accord-
mgly, the first step is divided into two parts - the first to determine dimensioning and the

second to obtain the actual elements connected to each node.

2.) For each nodal degree-of-freedom use the list of elements to find all the other nodal
degree-of-freedoms which are connected. Since we are currently considering symmetric

equations only the terms above the diagonal entry are constructed.

The above two steps have been incorporated into the set of subprograms which are listed
in Appendix A. In FEAP the array of nonzero terms may be constructed by using the macro
command CTAN (compressed tangent stiffness matrix) instead of the usual TANG (note that
there is no equivalent compressed array for UTAN since neither of the preconditioned solvers
is programmed to handle unsymmetric equations). Thus a typical Newton iteration using the

PCG «'eorithm is given by the set of macro statements:

LOOP NEWT,10
CTAN

FORM

PCG ,LINE.1.,100.
NEXT

where the LOOP for the NEWTon step is to be executed for a maximum of 10 iterations (the
iteration will terminate earlier if the prescribed tolerance on energy is met), CTAN indicates a
compressed tangent is to be constructed as described above, and PCG indicates that the Precon-
ditioned Conjugate Gradient algorithm 1s to be used with LINE search (omit LINE il no line
search is desired - the current scarch requires several evaluations of the residual, consequentls
tor Jlarge problems may be time consuming), the 1. indicates that the value of o 1s umty, and

100 1s the maximum number of PCG iterations to be used to solve the cquations.  Alteroa.

tively, the commands.
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N LOOP,NEWT, 10
N CTAN -1
LANC,LINE,1.,100.

NEXT
may be used. The nonzero value on the CTAN instruction indicates that a residual 15 10 be

computed as well as the compressed tangent and is thus equivalent to CTAN and FORM. The

use of LANC instead of PCG indicates that the Lanczos algorithm is to be employed.

|-

d.‘

o

'0- . - - ..t Lo, - T e e vt e,

R S P T NI I D R NIRRT SRR AR AP P A, L L S LAY SRS AN
- N R .Sy .J Y Nal "1 P ", -

D

RN Tl




“'"".‘..'. b
R ".’-".'

e
»’.'

7
. RS a7y,

PP

B
a%e’
', *s

1tatit

L}

0 . ¥
e et
CE I S
o Tt
s .

l.l‘.."
Sy % %5
o B b b 4

»
A

Cull
.
)
e

<18 -

8. Numerical Examples

The precenditioned conjugate gradient algorithm (as well as the Lanczos method) has
been tested on a series of test problems. In order to assess the overall efficiency of problem
solution we report both the computing time (for a VAX 11/780 computer operating under
UNIX 4.2 BSD) and storage requirements for the coefficient array. In our test problems we

include two and three dimensional solids subjected to both static and dynamic loading states
Example 1. Two dimensional cantilever structure.

The first example considered is a cantilever structure with two holes to induce added
stress gradient effects The model consists of 225 nodes with 184 4-node plane elemenis. see
Figure | The material s tinear elastic and utilizes ELMTOL described in Chapter 24 of {13].
For this problem (as well as all subsequent analyses) we perform a solution using the direct
solution of the eguations as well as the PCG and Lanczos algorithms. The timing and perfor-
mance of the PCG and Lanczos methods utihzed are nearly identical, accordingly, we shall
report only the results for the PCG algorithin. The essential results for the cantilever structure
are summarized below.

Model- Cantilever type structure
(225 nodes 184 elements)

profile 9990 Non-zero terms 3162
Statie
Direct
total time  16.77
PCG
total ime 2878 < 39 gerations »
Dynamic
(S time  Direct
steps) total tme 32,42

PCG
total ime 77.82 < 24 10 27 derations >

These results are much as expected - mdicating that the derative PCG algorithm requires more

solution cffort (measured in CPU time) than a direct solution. The only redeeming feature for

this example 15 the reduced storage requirements for the stiffness matrix (3162 words instead of
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9990 words).  Accordingly, if one had access to a very small computer it is conceivable that the
PCG algorithm would be more effective since it could greatly reduce the number of calls to
backing storage. On the otherhand. with access to a virtual memory machine the direct solu-

tion is to be preferred.
Example 2. Cylindrical Structures

As a second example we consider a cylindrical structure subjected to end loadings. Two
different meshes are considered to illustrate the performance of the PLM algorithm under mesh
refinements. The material is again linearly elastic and both static and dynamic loadings arc con-
sidered. The first mesh consists of 231 nodes and 200 4-node isoparametric elements (tvpe
ELMTOD). while the refined mesh consists of 496 nodes and 450 elements. The meshes are

shown in Figures 2. and 3. Results for the analyses are summarized below.

Model: Small Cylinder Structure
(231 nodes 200 clements)

profile 17485 Non-zero terms: 3345
Static
Direct
total time: 22.50
PCG

total time: 30.63 < 39 iterations>

'
_l. >

.
e e

AR Dynamic

N (15 time  Direct

-:';-:' steps) total time: 83.32
P PCG

total time: 232,75 < 25 to 27 iterations >
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. Model: Large Cylinder structure

3 (496 nodes 450 elements)

- profile 57280 Non-zero terms: 7570

- Static

- Direct

E . total time: 71.82

h PCG

- total time: 149.48 <140 iterations>

- Dynamic

- (5 time Direct
L. steps) total time: 119.73

o PCG

.5 total time: 230.37 <31 to 39 iterations>

- Once again the direct solution is more efficient in CPU, however the storage requirements for

the PLM (or PCG) method are significantly less than the direct method. Note that the number
'j:' of terms is almost directly proportional to the number of nodes (indeed for a regular mesh of
': 4-node quadrilateral elements the number of nonzero terms in any column is 10 or less).
whereus for the direct method the number of terms within the nonzero profile of the matrix is

‘ almost proportional to the number of nodes squared! The other significant fact in this example
-": is the number of iterations required to solve the dynamic problem is significantly less than that
..

J required for the static loading. Furthermore, for the dynamic loading the number of iterations
,--_:j required to solve the problem increases very little with increased problem size.

_'_\

::‘_~ Example 3. Three Dimensional Structures

L

b . o

o In order to assess the performance of the PCG algorithm on three dimensional problems
:;:j we have counsidered the loading on a compact block of 8-node brick i1soparametric elements.
"::: Two different meshes with hnear elastic material properties have been considered. The first
P

mesh consists ol 64 elements which are arranged in a regular cube with 4 clements on i side

[y
.

(
. .
«

OOONWNE TR

The mesh has 125 nodes with 21795 words required to store the nonzero profile for a direct
solution and only 7455 words required for the PCG method. For the dynamic loading case. this

problem produces the first PCG results which are more efficient than a direct solution. The

results are summarized below:
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Model: 4 X 4 X 4 solid structure
(125 nodes 64 elements)

profile 21795 Non-zero terms: 7455
Static
Direct
total time: 46.65
PCG
total time: 201.49 <187 iterations >
Dynamic
(4 time Direct
steps) total time: 93.18
PCG

total time: 79.13 <25 to 27 iterations>

In order to assess the improvement in performance we constructed a larger problem by subdi-
viding the mesh to form a cube with 8 elements on each edge. Accordingly, the mesh now
contains 512 8-node brick elements with a total of 729 nodes. The nonzero profile increases
dramatically to 469,071 words whereas, as before, the number of nonzero terms in the
compressed profile only increases proportionally to the number of nodes to 60,903 words. The
ratio of solution times for the dynamic loading case increases even more for this case, as sum-

marized below. moreover, even the static loading case now requires less CPU for the PCG

method than that of the direct solution.

Model: 8 X 8 X 8 solid structure
(729 nodes 512 elements)

profilc 469071 Non-zero terms: 60903
Static
Direct
total time:1585.23
PCG
total time:1145.29 <130 iterations>
Dynamic
(4 time Direct
steps) total time:2070.32
PCG

total time- 320.83 < 5 and 6 iterations >

This example tllustrates the type of improvements which should be attained for all large three
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N dimensional applicatons.  The size of problem we have considered is guite small Gndeed even
- _ . . . . . .

by the largest mesh we could consider is only marginally acceptable for simulating very simple

geometries) and is limited primarily by the fact that we utilized a VAX 11/780 computer. In

-;Z: double precision arithmetic we required over 4 megabytes of dimensioned memory 10 solve the
2O
v problem. We fully anticipate that applications to larger problems on faster ane larger computers
]
f".-: can achieve the same level of improvement we have indicated here.
\.':’
SO . . . H : H
~5 Example 4. Nonlinear Material Response - Two Dimensional Application.
~ In order to test the performance of the PLM algorithm in a nonlinear apphcation, we con-
T sidered the clastic-plastic static response of a plane strain strip with a hole. The mesh is shown
:j:-: in Figure 4. and the spread of plastic zone at different load steps in Figure 5. The problem was
. solved using both direct solution and the PLM method and utilized the consistent tangent for-
::-: mulation developed in [12). This formulation ensures a quadratic asymptotic rate of conver-
o : N
o gence when used with a full Newton method. The overall solution time for the PLM method
\‘ -
was gicater than the direct solution, in accordance with resuits obtained for Examples | and 2.
The PLM aigonithm performed well., however, and showed no loss in performance with
:’_‘ij increased plastic deformations.  Accordingly, we fully expect that the solution of nonhlinear
three dimensional problems will be more efficient with the PLM method than a solution
O achieved using a direct solution of the algebraic equations.
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9. Comparison of Global and Element by Element Preconditioned Methods

In order to indicate the number of operations in an element-by-element (EXE) method
compared to the global preconditioned form with compressed storage of the arrav we have
constructed a table to indicate the number of operations in a single iteration of each meth-
od. For the element-by-element method we assume a second order accurate douvble pass
method (e.g., see [8]). The results are summarized in the table for Examples 1, 2, and 3

cited above.

{iixatﬁ\plé-Al Mesh ; ()pudlmm A;ch herélion
i ! |

' | e e
| , Elmt | PCG/PLM EXE
L L .
L] s | 12,648 23.552
i

L2 200 l 13,380 25.600
’ |

|2 450 | 30,280 57,600
: i

.3 64 29,820 73.728
I

i 3] s12 ‘ 243,612 589.824
D

The difference in the number of operations is due to the fact that each degree-of-freedom in a
mesh s associated with more than one element. Indeced. on the average, the above table indi-
cates that there is a savings in number of operations by a ratio of about 1.8 to 2.5 for the
PCG/PLM  algorithms in comparison  with an  clement-by-element  algorithm.  Thus, an
clement-by-clement method must converge in about half as many steps in order 1o be as
efficient a- the PCG/PLM methods. Our previous experience indicated that element precondi-
tioning never converged in fewer steps that the global preconditioning method: consequently,
we believe that the current implementation offers considerable savings over element-by-
clement methods. The tinal proof of this assertion must. however, await considerable numeri-

cal testing of various implementations for iterative methods.
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:':-\:f Appendiy A. Listing of Compact Stiffness Construction.

Py The 1ull description of the algorithm to construct the compact storage of the stiffness is

described in. "An Algorithm for Assembly of Stiffness Matrices into a Compacted Data Struc-
ture.” by B. Nour-Omid and R. L. Taylor, Report No. UCB/SESM 84/06, Structural Enginecer-
ing and Structural Mechanics, University of California, Berkeley, May 1984. The hsting fol-

lows:
SUBROUTINE ELCNT(NUMNP,NUMEL.NEN,NENI,IX,IC)
DIMENSION IX(NEN1,1),IC(1)
C
C INPUT
C NUMNP TOTAL NO OF NODES IN THE MESH
C NUMEL TOTAL NO. OF ELEMENTS IN THE MESH
C NEN MAX NO. OF NODES PER ELEMENT
C NENI1 DIMENSION OF IX ARRAY
C 11X ELEMENT CONNECTIVITY ARRAY
C
c OUTPUT
C IC ARRAY OF LENGTH NUMNP IT FIRST HOLDS THE ELEMENT DEGREE
C OF EACH NODE. THEN BECOMES A POINTER FOR AN ARRAY THAT
C CONTAINS THE SET OF ELEMENTS CONNECTED TO EACH NODE
C
C COUNT THE NUMBER OF ELEMENTS EACH NODE BELONGS TO
¢

CALL [ZERO(1C NUMNP)
DO 110 N = 1 ,NUMEL
DO 100 J = 1 ,NEN
I = 1X(J,N)
IF(1 GT 0) IC(I) == IC(1) + 1
100 CONT INUE
110  CONTINUE

C
C SET UP POINTERS
C
DO 120 1 = 2 NUMNP

1C(1) = 1C(1) + 1C(1-1)
120  CONTINUE

C
RETURN
END
SUBROUTINE CASSEM(D,A.B,S.P,JCOLE, IROW,LD, 1D NST,NEL AFL BFL)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
LOGICAL AFL,BFL
DIMENSION D(1),A(1)}.B(1),S(NST, 1) ,P(1),JCOLE(1),1ROW(1),LD(1)
1 LID(1)
e c 1
-~ c COMPACT ASSEMBLY OF PROFILE MATRIX
. C
DO 200 J 1 ,NEL {
N LD(J)
- IF¥ { AFL AND N GT 1 ) THEN
.. DO 150 1 1, NEL
h K LD(1)
o IF ( K GT o AND K LT N ) THEN
- INZ = INZA( JCOLE(N-1)+1,JCOLE(N), IROW K)
" A(INZ) == A(INZ) + S(1,17)
- END iF
- 150 CONTINUE
. END IF
- c . ASSEMBLE THE DIAGONAL

IF ( N GE. 1 ) THEN
IF { AFL ) D(N) ~ D(N) + S(J.1)
ASSEMBLE THE LOAD 1F NECESSARY
IF ( BFL ) B(N) -- B(N) + P(J)

1o

o)

2]

?( END IF
o p 200  CONTINUE
o RETURN
END

1@
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SUBROUTINE COMPRO(NUMNP ,NUMEL ,NEN,NEN1 ,NDF, IX, 1D, IC, IROW, IELC,
1 JCOLE .KP)
DIMENSION IX(NEN1,1),ID(NDF,1),1C(1),IROW(1),1ELC(1),JCOLE(1)

FOR (NUMNP K NUMEL ,NEN,NEN1,1X,1C) SEE SUBROUTINE ELCNT
INPUT

NDF NUMBER OF UNKNOWNS AT EACH NODE

1D ACTIVE UNKNOWNS AT EACH NODE

OUTPUT

IELC HOLDS THE SET OF ELEMENTS CONNECTED TO EACH NODE
IROW RON NUMBER OF EACH NONZERO IN THE STIFFNESS MATRIX
JCOLE END OF ENTRIES IN IROW FORM A GIVEN COLUMN

FIND ELEMENTS CONNECTED TO NODES
CALL 1ZERO (1ELC, IC(NUMNP))

DO 230 N = 1, ,NUMEL
DO 220 J = 1 ,NEN

I = I1X(J.N)
IF (I GT 0 ) THEN
KP = IC(1)

IF ( IELC(KP) EQ 0 ) GO TO 210
KP = KP - 1
GO TO 200
1ELC{KP) = N
END IF
CONT INUE
CONTINUE

SET UP COGMPRESSED PROFILE POINTERS

KP = 0

NEP = 1

DO 350 1 = 1 NUMNP
NE = IC(1)
DO 340 11 —= 1 NDF

NEQ = ID(11.1)
IF ( NEQ GT. 0 ) THEN
JCOLE(NEQ) == KP
KPO = KP + 1
IF { NEP LE NE ) THEN
DO 330 N == NEP NE
NN == 1ELC(N)
DO 320 J - 1t NEN
K = IX(J.NN)
DO 310 JJ == 1 ,NDF
NEQJ = ID(JJ ,K)

IF (NEQ} .GE. NEQ OR NEQJ .LT 0) GO TO 310

CHECK TO SEE IF NODE ALREADY IN LIST

IF ( KPO LE KP ) THEN
DO 300 KK = KPO,KP
IF( IROW(KK) .EQ. NEQJ ) GO TO 310
CONT INUE
END IF
KP = KP + 1
IROW(KP) -- NEQI

CONTINUE
CONTINUE
CONT INUE
JCOLE(NEQ) = KFP
END IF
END IF
CONT INUE
NEP = NE + 1
CONT INUE
RETURN
END

-

‘- ™ « - - - - - - o - - »' - - - .l 'I - .I .h .n "--. ‘l ~I' - '. .- .- T a .l .'- '. !
N R R R o N N N S T A S L LA L R S LG T S L A ST O LB L RN T



" INTEGER FUNCTION INZA(N1,N2,1ROW K)

- DIMENSION IROW(1)

Seo C

i C. .. FIND THE TERM FOR THE ASSEMBLY
) C

L DO 100 N = Ni,N2
IF ( IROW(N) .EQ K ) THEN

o INZA = N

X RETURN

M END IF

) 160  CONTINUE

o c ERROR IF LOOP EXITS
0N STOP

END

@

T
‘j? SUBROUTINE 1 ZERO( 1A, ,NN)
. DIMENSION 1A(NN)

DO 100 N = 1 ,NN
IA(N) = 0
100 CONTINUE
RETURN
END
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Figure 1.

Cantilever Type Structure
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Figure 2.

Small Cylinder Structuve
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Figure 3. Large Cylinder Structure
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